Southern Softwood Stumpage Markets
by
Douglas R. Carter 1

Abstract

The potential for structural change in southern **stumpage** market models has impacts on not only our basic understanding of those markets, but also on harvest, inventory and price projections, and related policy. In this paper, we test for structural change in **both** sawtimber and pulpwood softwood **stumpage** markets in the U.S. South over the period **1950**-1994. Test results strongly reject structural stability in both sawtimber and pulpwood supply over the period. However, **stability** in **stumpage** demand can not **necessarily** be rejected Using a new technique, Flexible Least Squares **(FLS)**, a series of varying elasticity models are estimated. Results of the FLS procedure show that both pulpwood and **stumpage** price supply elasticities have been trending upward over time. The degree of this trend depends upon whether a linear or log-linear model is **specified**.

INTRODUCTION

This paper addresses structural stability and the potential for time-varying price elasticities in southern softwood **stumpage** markets. The specific purposes of this paper are first, to test for structural stability in southern softwood sawtimber and pulpwood **stumpage** markets, and second, to estimate a **flexible** parameters model that examines how structural **change** might be embodied in **stumpage** price elasticities over time.

The question of structural change in **stumpage** markets is a concern because it impacts our basic understanding of those markets. Our understanding is generally embodied in a set of parameter values such as price and inventory elasticities, and functional form Concerns also rest with the methods used to estimate market parameters.

Often, parameters are estimated using limited time-series data. Estimates based on historical data are only good in the sense that they measure the "average** market structure over the estimated time period. In many cases, this may not necessarily represent a problem. If, though, one is interested in obtaining a more precise estimate of the market parameter as it now exists, because this 'true' parameter is important for making good policy, then using historical data to measure the parameter may give poor results. This is especially true if the market structure is trending in a particular manner over time, or if there is an abrupt structural change in the market.

A brief example might help to show why understanding structural change in markets may be of interest. Let us assume that if structural change is occurring in southern stumpage markets for instance,

tbat this could manifest itself through changing demand or supply price elasticities. Consider using the Timber **Assessment Market Model (TAMM; Adams and Haynes** 1980, 1996) to project future harvest, inventory, and price changes under both an "average" sawtimber **stumpage** supply elasticity parameter based on historical data and a "**true**" parameter that reflects the current (and future) elasticity.

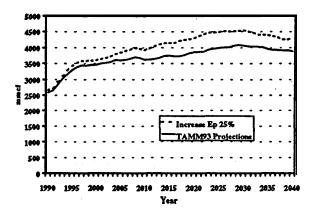


Figure 1. Softwood saw-timber harvest.

Figures 1-3 illustrate the sensitivity of TAMM (1993 version) softwood sawtimber harvest, softwood inventory, and sawtimber price projections for the U.S. South to an increase in softwood sawtimber supply price elasticities (Ep) by 25% above currently simulated levels (for example, from 30 to .375). Such a scenario might prove plausiile if, for instance, elasticities were rismg over time, but TAMM used the average elasticity

¹ Associate Professor of **Forest** Economics and Management, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611-0420. Funding for **this research** was provided by the USDA Forest Service, Southern Research Station, Economics of Forest Protection and Management Work Unit, RTP, NC 27709. This is Florida Agricultural **Experiment** Station Journal Article Number N-01573.

estimated with historical data. **Both** graphs illustrate what one might expect-au increasing supply elasticity **makes** timber more available to the market (Figure 1), thereby reducing inventory **levels** (Figure 2) but also reducing **stumpage** prices (Figure 3). Differences iu projections because of unrecognized structural changes could have **meaningful** policy impacts.

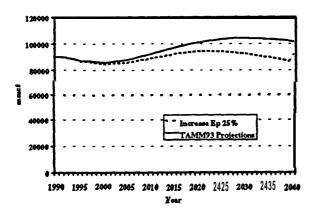


Figure 2. Softwood growing stock inventory.

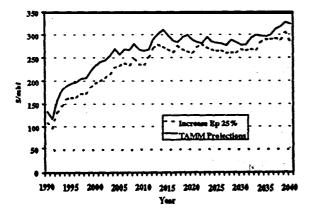


Figure 3. Sawtimber softwood stumpage prices.

Another area where elasticity estimates in particular are important is in the estimation of consumer aud producer welfare changes. In Newman (1990). changing assumptions about the magnitude of demand and supply stumpage price elasticities had an important effect on the distribution of benefits to producers and consumers from shifting inventories over time. Indeed, Newman (1990, pg 715) states that "Comparing these results implies that greater concern for the precision of the price elasticities is needed when the distributional consequences of supply shifts are examined".

METHODS AND RESULTS

Market Equations-To analyze potential structural change in southern softwood stumpage markets, it is first necessary to specify the form of the supply and demand functions that allegedly represent the structure of those markets. It makes some sense to test the hypothesis of structural change employing model forms that are most commonly represented in the literature.

Previous work (e.g., Adams and Hayues 1980, 1996, Newman 1987) has presumed aggregate stumpage supply (Q_t^t) to be in general a function of own price (P_t), inventory (I_t), and other supply shifters (Z_t):

$$Q_t^s = \alpha_0 + \alpha_1 p_t + \alpha_2 I_t + \alpha_3 Z_t \tag{1}$$

This is Newman's (1987) specification except that substitute product prices were also included (e.g., sawtimber in pulpwood supply). Adams and Haynes (1980) estimated the supply functions for industrial and non-industrial ownerships separately using the following structure:

$$Q_{t}^{s} / I_{t} = \beta_{0} + \beta_{1} p_{t} + \beta_{2} Z_{t}$$
 (2)

An important distinction between (1) and (2) is the form of the dependent variable (quantity to inventory ratio), which in the Adams and Haynes (1980) and subsequent formulations in **TAMM** (e.g., Adams and **Haynes** 1996) restricts the inventory elasticity to unity. Interest rate (for industrial) and income variables (for non-industrial owners) were also included. Updated versions of **TAMM** supply equations now presumably include substitute product prices and the dependent variable **lagged** one period. Both Adams and Haynes (1980, 1996) and Newman (1987) utilized strictly linear (compared to log-linear) model forms. Elasticities are thus estimated indirectly. paper we consider the following specifications of the supply function for industrial and non-industrial ownerships combined to test for structural change in supply:

a)
$$Q_i'' = \alpha_0 + \alpha_1 p_i + \alpha_2 p_i' + \alpha_3 I_i$$

b) $\ln Q_i'' = \alpha_0 + \alpha_1 \ln p_i + \alpha_2 \ln p_i' + \alpha_3 \ln I_i$
and (3)

c)
$$Q_i^s / I_i = \alpha_0 + \alpha_1 p_i + \alpha_2 p_i^s$$

d) $\ln Q_i^s / I = \alpha_0 + \alpha_1 \ln p_i + \alpha_2 \ln p_i^s$

where Q_t^s is softwood stumpage quantity supplied (pulpwood or sawtimber), p_t is own price, p_t^s is substitute price and I_t is total softwood growing stock inventory.

Structural change in softwood **stumpage** demand is examined using the **following** equations which are slight **modifications** of the specifications proposed by Newman (1987):

a)
$$Q_t^D = \gamma_0 + \gamma_1 p_t + \gamma_2 f_t + \gamma_3 w_t + \gamma_4 Q_{t-1}^D$$

and (4)

b)
$$lnQ_t^D = \gamma_0 + \gamma_1 \ln p_t + \gamma_2 \ln f_t + \gamma_3 \ln w_{t+} \gamma_4 \ln Q_{t-1}^D$$

where Q_t^{D} is softwood stumpage quantity demanded (pulpwood or sawtimber), p_t is own price, f,

represents final goods price and \boldsymbol{w}_t represents labor costs. Here, capital is treated as a quasi-fixed input and hence lagged quantity demanded is included instead of a price for **capital**.

Data-Data for this analysis covers 12 southern U.S. states from Texas to Virginia. The data is annual and ranges the period 1950 to 1994. Sawtimber harvest quantities and growing stock inventory were supplied by Dr. Darius Adams and represent **unpublished** Forest Service data constructed for use in the latest RPA Assessment. Pulpwoodroundwood harvest and residue values were obtained **from** Howard (1997) and Ulrich (1989). The real producer price index for **pulp**, paper, and allied products was used as a final goods price for pulpwood. The real producer price index for all lumber was used as a final goods price for sawtimber (Ulrich 1989, Howard 1997). Wages for SIC 24 and SIC 26 are real hourly wages derived (i.e., total wages divided by hours worked) from the U.S. Department of Commerce, Survey of Manufacturers (various issues).

Up through 1976, sawtimber stumpage prices

are average **real stumpage** prices for sawtimber sold from National Forests (Ulrich 1989). After 1976, real Timber Mart South average prices are used. Pulpwood **stumpage** prices are an average of **midsouth** and southeast real southern pine pulpwood **stumpage** prices (Ulrich 1989). less **real** estimated logging and transportation costs. After 1987, these prices were derived using annualpercentagechanges **in Timber** Mart South average pulpwood **stumpage** prices.

Testing Structural **Change-Structural** change manifests **itself** in the instability of regression coefficients over time. Two basic procedures are used to test the bypothesis of structural **stability** in the supply and demand equations. Each of these **are** in some manner based on the stability of least squares residuals. The tests used are:

- **Chow** test (two and three period).
 - Test proposed by **Ploberger** and **Kramer** (1996) **(P&K).**

Chow tests examine the stability of regression coefficients over different data subsets. In our case, there is no a priori method for determining what subsets should be tested (i.e., where the structural shift takes place). Recognizing this, we test stability using both two period (1950-1972, 1973-1994) and three period (1950-1965, 1966-1980, 1981-1994) subsets. The P&K test is nongraphical version of the CUSUM test (see Greene 1997) and is considered more powerful in the presence of trending data. Since both of these are single equation methods, we utilize instrumental variables where potential endogeneity is a concern.

Results of each test are presented in Tables 1 and **2, respectively.** Using the Chow test (Table **1),** for both two and three period comparisons, structural stability is rejected in all supply model formulations, as well as in **sawtimber** demand models. Only in the **pulpwood** demand model formulations was stability not rejected.

Table 1. Chow structural change test results.					
Supply Equations					
	Pulpwood		Sawtimber		
	2 Per.	3 Per.	2 Per.	3 Per.	
<u>v=O/I</u> Linear	9.04*	4.53*	22.0*	19.6*	
Log	10.2*	5.03*	23.1*	21.3*	
<u>y=Q</u> Linear Log	2.75** 2.92**	8.20* 7.76*	18.4* 27.1*	18.9* 24.9*	
Demand Equations					
	Pulpwood		Sawtimber		
	2 Per.	3 Per.	2 Per.	3 Per.	
Linear Log	.56 .42	136 1.28	2.06*** 3.65*	3.93*** 5.11*	
* n<.01					

^{**} p<.01 ** p<.05 *** p<.10

critical values based on relevant F-test

P&K structural change tests also strongly reject structural **stability** in supply overall (Table 2). All supply equations, using quantity to inventory (Q/I) as the dependent variable, are rejected at the 1% level. However, using only quantity as the dependent variable, stability is not rejected for the log pulpwood model but is for the linear pulpwood model at the 10% level. Both sawtimber supply models are rejected. We are unable to reject stability of demand equations at any meaningful level of significance. The inability to reject stability in demand equations may be due to the fact that the demand equations were relatively less robust when compared to the supply equations, and they included a lagged variable. This might lead one to question whether or not including a lagged variable in our supply equations would alter the outcome of the structural change tests. Inclusion of a lagged dependent variable in supply indeed improved the stability of those equations. Still, stability could be rejected in several instances. The inclusion of a Jagged dependent variable in supply however appears to have a weaker **theoretical** justification than it does in the demand **model.**

Table 2. P&K structural change test results.					
Supply Equations					
	Pulpwood	Sawtimber			
Y=O/I					
Linear	1.33*	1.24*			
Log	1.34*	1.25*			
y=Q					
Linear	.39***	1.14*			
Log	.30	1.19*			
Demand Equations					
	Pulpwood	Sawtimber			
Linear	.04	.07			
Log	.06	.06			

p<.01*** p<.10for critical values, see Plober

for critical values, see Ploberger and Kramer (1996).

These results provide fairly powerful evidence of structural instability over time in timber supply, as traditionally model& in southern softwood stumpage marketsover the period 1950 to 1994. In thepulpwood supply models, instability may be more pronounced in the Q/I dependent variable formulation. Structural instability in demand is less demonstrable overall, but some evidence points to instability in sawtimber demand as well.

Flexible Least Squares-One method for exploring the nature of parameter instability is to hypothesize that the underlying varying parameter model takes the form:

$$y_t = x_t \beta_t + \varepsilon_t, \qquad t = 1, 2, ..., T$$
 (5)

where

$$\beta_t = \beta_{t-1} + \nu_t, \quad t = 2,3, \dots, T$$
 (6)

Note that the k parameter vector β_t is allowed to vary over time. There are two sources of stochastic variation in this model. The first is a normal stochastic variation on y_t , and the second is a dynamic error on

 β_t , which is allowed to vary slowly over time.

The method used to estimate this model is relatively new, is termed Flexible Least Squares (FLS), and Was developed by **Kalaba and** Tesfatsion (1989). The FLS estimator is:

$$= \sum_{t=1}^T \hat{v_t'} \psi \hat{v_t} + \sum_{t=1}^T \hat{\varepsilon_t'} \hat{\varepsilon_t},$$

matrix, and where μ_k lies on the interval $0 < \mu_k < \infty$. The FLS estimator is made up of two components. The second component in (7) is simply the sum of squared residual errors—however b_t may fluctuate over time. The first component is the sum of squared residual dynamic errors, scaled by the matrix ψ . One may allow some or all model coefficients to vary over time depending upon the weights prescribed in ψ .

Minimization with emphasis on the second component (i.e., small ψ) is equivalent to a fully random coefficients estimator. Minimization with respect to the first component (i.e., large ψ) is equivalent to producing the OLS estimator. FLS is a single equation estimator. In order to reduce simultaneitybias wemodifytheprocedureviatheuseof instrumental variables, thereby giving rise to our **IV_FLS** estimator.

In this paper we make the simplifying assumption that **structural** change is embedded in the own price elasticity. This assumption is only really critical in one interesting **respect**. Early **optimizations** indicated that, there was a (nearly) direct tradeoff between thevariation in theownprice elasticity and the inventory elasticity. This might lead one to believe that **structural** change **manifests** itself **primarily** in the inventory elasticity. However, the **inventory** elasticity **appears to be a function of the price elasticity**. That is, inventory changes are **endogenous**. This makes it

difficult to **separate** supply responses that result from real changes in inventory and supply responses that result from changes in price. For that reason, the inventory elasticity is held fixed over time. Surprisingly, the inventory elasticity tends to migrate to a unitary elasticity (from what it otherwise would be in a purely fixed **coefficient** model) when the price elasticity is allowed to vary. This would tend to support the TAMM **specification** of the supply model.

IV_FLS Results--Price elasticities (Ep) for sawtimber and pulpwood supply models are presented in Figures 3 and 4. There are dramatic differences in elasticity trends between linear and log models, but the form of the dependent variable (Q or Q/I) makes little practical difference. This may also support the assumption of a fixed inventory elasticity.

It tends to matter rather dramatically whether one assumes a log or linear model when discussing the effects of structural change in **stumpage** supply models. **Figure** 3 shows that, using a linear model, sawtimber price elasticities have varied substantially over time. In the log model the variation is much less, and might be **considered** by some to represent relative stability. In **Figure 4**, pulpwood elasticities also vary much more using **the linear model form.** In all cases, however, there is evidence that elasticities have been rising over time (for sawtimber, since the early **1960s**).²

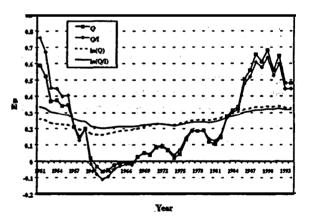


Figure 3. Sawtimber supply own price elasticities.

² In **the linear model,** elasticities are generated indirectly using average values of the sampledata.

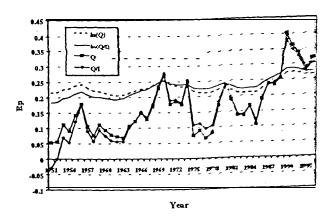


Figure 4. Pulpwood supply own price elasticities.

CONCLUSIONS

The purpose of this paper has been to test the hypothesis of structural stability over time in southern pulpwood and sawtimber stumpage markets. Using traditional model specifications of these markets, we were able to reject structural stability on the supply side in favor of structural change. On the other hand, we can not necessarily reject structural stability on the demand side.

The nature of the structural change was hypothesized to reside in the landowner's response to own price changes. Using the techniques of FLS, timevarying stumpage price elasticities were estimated. Results show that supply elasticities have generally been rising. This result is much more dramatic in the linear model than in the log model. Still, the rises are potentially significant for both from a modeling perspective.

Structural change indeed has ramifications for timber supply modeling. If supply elasticities are rising, this portends lower inventories and in the short to medium term, perhaps lower stumpage prices than currently projected for southern stumpage markets.

Literature Cited

Adams, D.M. and R.W. Haynes. 1980. The 1980 softwood timber assessment market model: structure, projections, and policy simulations. For. Sci Monogr. 22.

Adams, D.M. and R.W. Haynes. 1996. The 1993 timber assessment market model: structure, projections, and policy simulations. USDA For. Serv. Gen. Tech. Rep. PNW-GTR-358.

Greene, W.H. 1997. Econometric Analysis (3rd ed.). Prentice-Hall, Inc. Upper Saddle River, NJ. 1075 p.

Howard, JL. 1997. U.S. timber production, trade, consumption, and price statistics: 1965-1994. USDA For. Serv., For. Prod. Lab., Gen. Tech. Rep. FPL-GTR-98.

Kalaba, R. and L. Tesfatsion. 1989. Time-varying linear regression via flexible least squares. Computers Math. Applic. 17:1215-1245.

Newman, D.H. 1987. An econometric analysis of the southern softwood stumpage market: 1950-1980. For. Sci. 33:932-945.

Newman, D.H. 1990. Shifting southern softwood stumpage supply: implications for welfare estimation from technical change. For. Sci. 36:705-718.

Ploberger, W. and W. Kramer. 1996. A trend-resistant test for structural change based on OLS residuals. J. Econometrics 70:175-185.

Uh-ich, AH. 1989. U.S. timber production, trade, consumption, and price statistics: 1950-1987. USDA For. Serv. Misc. Publ. 1471.